The α-subunit of the heterotrimeric G-protein affects jasmonate responses in Arabidopsis thaliana
نویسندگان
چکیده
Heterotrimeric G-proteins have been implicated in having a role in many plant signalling pathways. To understand further the role of G-proteins, a preliminary experiment was performed to assess the impact of the G alpha subunit loss-of-function mutation gpa1-1 on the Arabidopsis transcriptome. The analysis indicated that the G alpha subunit may play a role in response to jasmonic acid (JA). Consistent with this, G alpha mutants showed a reduced response to JA in inhibition of chlorophyll accumulation and root growth, whilst G alpha gain-of-function plants overexpressing G alpha showed the opposite phenotype. The levels of JA and related compounds were unaffected in the gpa1-1 mutant, as was autoregulation of the Allene Oxide Synthase (AOS) gene that encodes a key enzyme for JA biosynthesis. In contrast, further analyses using G alpha loss- and gain-of-function Arabidopsis lines indicated that G alpha positively modulates the expression of the Vegetative Storage Protein (VSP) gene. This indicates that the G alpha subunit regulates a subset of JA-regulated genes defining a branch point in this signalling pathway in Arabidopsis. Further analysis of the impact of G alpha loss of function upon the JA-regulated transcriptome using Arabidopsis full genome arrays indicated that up to 29% of genes that are >2-fold regulated by JA in the wild type are misregulated in the G alpha mutant. This supports the observation that a significant proportion of, but not all, JA-regulated gene expression is mediated by G alpha.
منابع مشابه
Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling.
Heterotrimeric G proteins have been previously linked to plant defense; however a role for the Gbetagamma dimer in defense signaling has not been described to date. Using available Arabidopsis (Arabidopsis thaliana) mutants lacking functional Galpha or Gbeta subunits, we show that defense against the necrotrophic pathogens Alternaria brassicicola and Fusarium oxysporum is impaired in Gbeta-defi...
متن کاملHeterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases.
In fungi and metazoans, extracellular signals are often perceived by G-protein-coupled receptors (GPCRs) and transduced through heterotrimeric G-protein complexes to downstream targets. Plant heterotrimeric G proteins are also involved in diverse biological processes, but little is known about their upstream receptors. Moreover, the presence of bona fide GPCRs in plants is yet to be established...
متن کاملThe crystal structure of a self-activating G protein alpha subunit reveals its distinct mechanism of signal initiation.
In animals, heterotrimeric guanine nucleotide-binding protein (G protein) signaling is initiated by G protein-coupled receptors (GPCRs), which activate G protein α subunits; however, the plant Arabidopsis thaliana lacks canonical GPCRs, and its G protein α subunit (AtGPA1) is self-activating. To investigate how AtGPA1 becomes activated, we determined its crystal structure. AtGPA1 is structurall...
متن کاملNegative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana
Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...
متن کاملSaltational evolution of the heterotrimeric G protein signaling mechanisms in the plant kingdom.
Signaling proteins evolved diverse interactions to provide specificity for distinct stimuli. Signaling complexity in the G protein (heterotrimeric guanosine triphosphate-binding protein) network was achieved in animals through subunit duplication and incremental evolution. By combining comprehensive and quantitative phenotypic profiles of Arabidopsis thaliana with protein evolution informatics,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Experimental Botany
دوره 60 شماره
صفحات -
تاریخ انتشار 2009